skip to main content


Search for: All records

Creators/Authors contains: "Kereš, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusion coefficient κ ∼ 3 × 1029 cm2 s−1. Advection-only and streaming-only models produce order-of-magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are “trapped” in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc. 
    more » « less
  2. ABSTRACT We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code skirt on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-$\mu$m half-light radii of our FIRE-2 galaxies are ${\sim} 0.5\rm {-}4\, \rm {kpc}$, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuum emission is sensitive to both the dust mass and star formation rate distributions. 
    more » « less